|image1| .. |image1| image:: https://github.com/mansiagr4/gifs/raw/main/new_small_logo.svg Image Regression ================ In this tutorial, we will guide you through building and training a deep learning model for age estimation from facial images using Modlee and ``PyTorch``. This project demonstrates handling image data, constructing custom datasets, defining a neural network for regression, and training it effectively. |Open in Kaggle| First, we will import the the necessary libraries and set up the environment. .. code:: python import torch import os import modlee import pytest import lightning.pytorch as pl from torch.utils.data import DataLoader, Dataset from torch import nn from torchvision import transforms from PIL import Image import pandas as pd Now, we will set up the ``modlee`` API key and initialize the ``modlee`` package. You can access your ``modlee`` API key `from the dashboard `__. Replace ``replace-with-your-api-key`` with your API key. .. code:: python modlee.init(api_key="replace-with-your-api-key") The dataset we are using contains facial images labeled into three distinct age groups: ‘YOUNG’, ‘MIDDLE’, and ‘OLD’. These groups are mapped to numerical values (0, 1, and 2, respectively) for training purposes. The dataset is intended for use cases such as biometric analysis and media content age control, showcasing how deep learning can power practical applications in facial analysis. For this example, we will manually download the dataset from Kaggle and upload it to the environment. Visit the `Face Age Detection dataset page `__ on Kaggle and click the **Download** button to save the dataset to your local machine. Copy the path to the donwloaded files, which will be used later. Define a custom dataset class ``TabularDataset`` for handling our tabular data. We create the ``AgeDataset`` class to handle loading and preprocessing of images and labels from the dataset. The ``AgeDataset`` class inherits from ``torch.utils.data.Dataset``. .. code:: python AGE_GROUPS = {'YOUNG': 0, 'MIDDLE': 1, 'OLD': 2} # Mapping age groups to numerical labels class AgeDataset(Dataset): def __init__(self, image_folder, csv_file, img_size, transform=None): self.image_folder = image_folder self.data = pd.read_csv(csv_file) # Read the CSV file containing image paths and labels self.img_size = img_size self.transform = transform or transforms.Compose([ transforms.Resize(self.img_size[1:]), # Resize images to the specified size transforms.ToTensor(), # Convert images to PyTorch tensors ]) # Map the 'Class' column to numerical labels if 'Class' in self.data.columns: self.data['Class'] = self.data['Class'].map(AGE_GROUPS) def __len__(self): return len(self.data) def __getitem__(self, idx): img_path = os.path.join(self.image_folder, self.data.iloc[idx, 0]) label = torch.tensor(self.data.iloc[idx, 1], dtype=torch.float32) image = Image.open(img_path).convert('RGB') # Open the image and convert to RGB if self.transform: image = self.transform(image) # Apply transformations return image, label Now, we specify the file paths for the image folder and CSV file, create an instance of ``AgeDataset`` to load and preprocess the data, and initialize a ``DataLoader`` to batch and shuffle the data. .. code:: python # Define the paths to the image folder and CSV file image_folder = 'path-to-folder' csv_file = 'path-to-csv' # Initialize the dataset and dataloader train_dataset = AgeDataset(image_folder, csv_file, img_size=(3, 32, 32)) train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True) Next, we define the regression model using the ``ModleeImageRegression`` class. The ``ModleeImageRegression`` class extends the ``modlee.model.ImageRegressionModleeModel`` class, setting up a simple neural network for regression tasks. .. code:: python class ModleeImageRegression(modlee.model.ImageRegressionModleeModel): def __init__(self, img_size=(3, 32, 32)): super().__init__() # Store the input image size self.img_size = img_size # Calculate the total number of input features by multiplying dimensions self.input_dim = img_size[0] * img_size[1] * img_size[2] # Define a simple feed-forward neural network self.model = nn.Sequential( nn.Flatten(), # Flatten the input image into a 1D vector nn.Linear(self.input_dim, 128), # First linear layer with 128 output units nn.ReLU(), # Apply ReLU activation function nn.Linear(128, 1) # Output layer with a single unit (for regression) ) # Define the loss function for training (Mean Squared Error for regression) self.loss_fn = nn.MSELoss() def forward(self, x): # Pass the input through the model to get the output x = self.model(x) return x def training_step(self, batch, batch_idx): # Unpack the batch into input features (x) and target labels (y) x, y = batch # Get the model predictions for the input logits = self.forward(x) # Calculate the training loss loss = self.loss_fn(logits, y) # Return the loss as a dictionary return {'loss': loss} def validation_step(self, val_batch): # Unpack the validation batch x, y_target = val_batch # Get the model predictions for the validation input y_pred = self.forward(x) # Calculate the validation loss val_loss = self.loss_fn(y_pred, y_target) # Return the validation loss as a dictionary return {'val_loss': val_loss} def configure_optimizers(self): # Configure the optimizer (Adam) with a learning rate of 1e-3 return torch.optim.Adam(self.model.parameters(), lr=1e-3) # Create an instance of the model modlee_model = ModleeImageRegression(img_size=(3, 32, 32)) We start a training run with ``modlee.start_run()`` and configure the ``Trainer`` with the number of epochs. The model is then trained using the ``trainer.fit()`` method with the specified dataloader. .. code:: python # Start a training run with Modlee with modlee.start_run() as run: trainer = pl.Trainer(max_epochs=1) # Set up the trainer trainer.fit( model=modlee_model, train_dataloaders=train_dataloader, # Load training data val_dataloaders=val_dataloader # Load validation data ) After training, we inspect the artifacts saved by Modlee, including the model graph and various statistics. With Modlee, your training assets are automatically saved, preserving valuable insights for future reference and collaboration. .. code:: python last_run_path = modlee.last_run_path() print(f"Run path: {last_run_path}") artifacts_path = os.path.join(last_run_path, 'artifacts') artifacts = sorted(os.listdir(artifacts_path)) print(f"Saved artifacts: {artifacts}") .. |Open in Kaggle| image:: https://kaggle.com/static/images/open-in-kaggle.svg :target: https://www.kaggle.com/code/modlee/image-regression-example