|image1| .. |image1| image:: https://github.com/mansiagr4/gifs/raw/main/new_small_logo.svg Image Segmentation ================== In this tutorial, we will build an image segmentation model using the ``Pascal VOC 2012`` dataset, leveraging the Modlee package for experimentation. Steps Overview: 1. Setup and Initialization 2. Dataset Preparation 3. Model Definition 4. Model Training 5. Results and Artifacts Retrieval |Open in Kaggle| First, we will import the the necessary libraries and set up the environment. .. code:: python import torch import torchvision from torchvision import datasets, transforms from torch.utils.data import Dataset from torch.utils.data import DataLoader, Subset import tensorflow_datasets as tfds from pytorch_lightning.loggers import TensorBoardLogger import lightning.pytorch as pl import modlee import random import os Now, we will set up the ``modlee`` API key and initialize the ``modlee`` package. You can access your ``modlee`` API key `from the dashboard `__. Replace ``replace-with-your-api-key`` with your API key. .. code:: python modlee.init(api_key="replace-with-your-api-key") Now, we will define transformations for the input images and segmentation masks. Both will be resized to 256x256 pixels for standardization. .. code:: python # Define the transformations applied to the images and masks transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((256, 256)), # Resize all images to 256x256 torchvision.transforms.ToTensor() # Convert images to PyTorch tensors ]) target_transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((256, 256)), # Resize the masks to match the image size torchvision.transforms.ToTensor() # Convert masks to PyTorch tensors ]) Next, we will load the ``Pascal VOC 2012`` dataset using the ``VOCSegmentation`` class. .. code:: python # Prepare the VOC 2012 dataset for segmentation tasks train_dataset = torchvision.datasets.VOCSegmentation( root='./data', year='2012', image_set='train', download=True, transform=transform, #`transform` applies to input images target_transform=target_transform #`target_transform` applies to segmentation masks ) val_dataset = torchvision.datasets.VOCSegmentation( root='./data', year='2012', image_set='val', download=True, transform=transform, target_transform=target_transform ) To accelerate the training process, we will create smaller subsets of the training and validation datasets. We will define a subset of 500 samples for training and 100 samples for validation. .. code:: python # Use only a subset of the training and validation data to speed up training subset_size = int(len(train_dataset) * 0.1) # Use 10% of the training data train_indices = random.sample(range(len(train_dataset)), subset_size) train_subset = Subset(train_dataset, train_indices) # Create subsets of the datasets based on the indices we defined above val_subset_size = int(len(val_dataset) * 0.1) # Use 10% of the validation data val_indices = random.sample(range(len(val_dataset)), val_subset_size) val_subset = Subset(val_dataset, val_indices) We will now create ``DataLoader`` instances for both the training and validation subsets. .. code:: python # Create DataLoader for both training and validation data train_dataloader = DataLoader(train_subset, batch_size=8, shuffle=True) val_dataloader = DataLoader(val_subset, batch_size=8, shuffle=False) Next, we will create the image segmentation model within Modlee’s framework. We offer two different approaches for selecting a model: **Option 1: Use a Recommended Modlee Model** If you’d like to start with a benchmark solution, Modlee provides pre-trained and optimized models for specific tasks. You can retrieve a recommended model as follows: .. code:: python recommender = modlee.recommender.from_modality_task( modality='image', task='segmentation', in_channels=3 ) recommender.fit(train_dataloader) recommended_modlee_model = recommender.model **Option 2: Define Your Own Modlee Model** If you want to experiment with a custom architecture, you can define your own model. Below, we provide a model featuring an encoder for extracting relevant features and a decoder for generating the segmentation mask. .. code:: python # Define the image segmentation model class ImageSegmentation(modlee.model.ImageSegmentationModleeModel): def __init__(self, in_channels=3): super().__init__() self.encoder = torch.nn.Sequential( torch.nn.Conv2d(in_channels, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.Conv2d(64, 128, kernel_size=3, padding=1), torch.nn.ReLU(), ) self.decoder = torch.nn.Sequential( torch.nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2), torch.nn.ReLU(), torch.nn.Conv2d(64, 1, kernel_size=1), ) self.loss_fn = torch.nn.BCEWithLogitsLoss() def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) output_size = x.shape[2:] decoded = torch.nn.functional.interpolate(decoded, size=output_size, mode='bilinear', align_corners=False) return decoded def training_step(self, batch): x, y = batch logits = self.forward(x) loss = self.loss_fn(logits, y.float()) return loss def validation_step(self, batch): x, y = batch logits = self.forward(x) loss = self.loss_fn(logits, y.float()) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=1e-3) model = ImageSegmentation(in_channels=3) # Initialize the model Now, we can train and evaluate our model using ``PyTorch Lightning`` for one epoch. For this example, we’ll continue as if we created our own model. .. code:: python # Train the model using Modlee and PyTorch Lightning with modlee.start_run() as run: # Set `max_epochs=1` to train for 1 epoch trainer = pl.Trainer(max_epochs=1) # Fit the model on the training and validation data trainer.fit(model=model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader) After training, we will examine the artifacts saved by Modlee, such as the model graph and various statistics. Modlee automatically preserves your training assets, ensuring that valuable insights are available for future reference and collaboration. .. code:: python # Retrieve the path where Modlee saved the results of this run last_run_path = modlee.last_run_path() print(f"Run path: {last_run_path}") artifacts_path = os.path.join(last_run_path, 'artifacts') artifacts = sorted(os.listdir(artifacts_path)) print(f"Saved artifacts: {artifacts}") .. |Open in Kaggle| image:: https://kaggle.com/static/images/open-in-kaggle.svg :target: https://www.kaggle.com/code/modlee/modle-image-segmentation