Text Regression =============== This tutorial will walk you through building an end-to-end text regression pipeline using the ``Modlee`` package and ``PyTorch Lightning``. We’ll use the ``Yelp Polarity`` dataset, which contains customer reviews labeled with sentiment scores, to build a simple regression model that predicts a continuous value based on the text. |Open in Kaggle| First, we will import the the necessary libraries and set up the environment. .. code:: python import os import torch import modlee import lightning.pytorch as pl from torch.utils.data import Dataset from torch.utils.data import DataLoader, TensorDataset from sklearn.model_selection import train_test_split from transformers import AutoTokenizer from datasets import load_dataset Now, we will set up the ``modlee`` API key and initialize the ``modlee`` package. You can access your ``modlee`` API key `from the dashboard `__. Replace ``replace-with-your-api-key`` with your API key. .. code:: python modlee.init(api_key="replace-with-your-api-key") Text data needs to be tokenized (converted into numerical format) before it can be used by machine learning models. We use a pre-trained BERT tokenizer for this. .. code:: python tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") We define a function to preprocess raw text data using the tokenizer. Tokenization ensures that the input data has a uniform format and length, making it suitable for training deep learning models. .. code:: python # Tokenization function: converts text into numerical format def tokenize_texts(texts, tokenizer, max_length=20): encodings = tokenizer( texts, truncation=True, # Truncate if too long padding="max_length", # Pad if too short max_length=max_length, return_tensors="pt", # Return PyTorch tensors add_special_tokens=True, # Include special tokens like [CLS], [SEP] ) input_ids = encodings['input_ids'] attention_mask = encodings['attention_mask'] return input_ids, attention_mask In this step, we load a text dataset using Hugging Face’s ``datasets`` library. We are using the **Yelp Polarity** dataset, which consists of movie reviews labeled as positive or negative. .. code:: python def load_real_data(dataset_name): # Load the dataset based on the provided name. # In this case, we are specifically loading the 'yelp_polarity' dataset. dataset = load_dataset("yelp_polarity", split='train[:80%]') # Load the first 80% of the training data # Extract the 'text' column from the dataset, which contains the review texts. texts = dataset['text'] # Extract the 'label' column, which contains the sentiment labels (positive or negative). targets = dataset['label'] targets = [float(label) for label in targets] # Return the texts and their corresponding sentiment labels (targets). return texts, targets We tokenize the dataset and split it into training and testing sets. This step ensures that we have separate datasets for training and evaluation. .. code:: python # Load 'yelp_polarity' dataset texts, targets = load_real_data(dataset_name="yelp_polarity") # Use only the first 100 samples for simplicity texts = texts[:100] targets = targets[:100] # Tokenize the text into input IDs and attention masks input_ids, attention_masks = tokenize_texts(texts, tokenizer) # Split the data into training and testing sets (80% train, 20% test) X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test = train_test_split( input_ids, attention_masks, targets, test_size=0.2, random_state=42 ) We prepare PyTorch ``DataLoader`` objects to feed data into the model during training. .. code:: python # Define a custom PyTorch Dataset class TextDataset(Dataset): def __init__(self, X, y): self.X = X self.y = y def __len__(self): return len(self.y) def __getitem__(self, idx): return self.X[idx], self.y[idx] # Create training and testing datasets train_dataset = TextDataset(torch.tensor(X_train_ids, dtype=torch.float),torch.tensor(y_train, dtype=torch.float)) test_dataset = TextDataset(torch.tensor(X_test_ids, dtype=torch.float),torch.tensor(y_test, dtype=torch.float)) # Create DataLoaders for batch processing train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False) train_dataloader.initial_tokenizer = tokenizer Now, we create our model. We offer two different approaches for selecting a model: **Option 1: Use a Recommended Modlee Model** If you’d like to start with a benchmark solution, Modlee provides pre-trained and optimized models for specific tasks. You can retrieve a recommended model as follows: .. code:: python recommender = modlee.recommender.from_modality_task( modality='text', task='regression' ) recommender.fit(train_dataloader) recommended_modlee_model = recommender.model **Option 2: Define Your Own Modlee Model** If you want to experiment with a custom architecture, you can define your own model. Below, we create a custom text regression model by inheriting from Modlee’s ``TextRegressionModleeModel``. .. code:: python # Define a simple MLP-based regression model using Modlee class MLPTextRegressionModel(modlee.model.TextRegressionModleeModel): def __init__(self, vocab_size, embed_dim=50, tokenizer=None, max_length=20): super().__init__() self.embedding = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=tokenizer.pad_token_id if tokenizer else None) self.fc1 = torch.nn.Linear(embed_dim * max_length, 256) self.fc2 = torch.nn.Linear(256, 64) self.fc3 = torch.nn.Linear(64, 1) # Single output for regression self.loss_fn = torch.nn.MSELoss() # Mean Squared Error loss self.max_length = max_length def forward(self, input_ids): if isinstance(input_ids, list): # Convert list to tensor if needed input_ids = torch.stack([torch.tensor(item, dtype=torch.long) for item in input_ids]) elif not isinstance(input_ids, torch.Tensor): input_ids = torch.tensor(input_ids, dtype=torch.long) if input_ids.dim() == 3: # Ensure correct shape input_ids = input_ids.view(-1, self.max_length) embedded = self.embedding(input_ids.long()).flatten(start_dim=1) x = torch.nn.functional.relu(self.fc1(embedded)) x = torch.nn.functional.relu(self.fc2(x)) return self.fc3(x) # Output a single continuous value def training_step(self, batch, batch_idx): input_ids, targets = batch preds = self.forward(input_ids) return self.loss_fn(preds, targets) # Compute loss def validation_step(self, batch, batch_idx): input_ids, targets = batch preds = self.forward(input_ids) return self.loss_fn(preds, targets) # Compute validation loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=1e-3) # Initialize model modlee_model = MLPTextRegressionModel(vocab_size=tokenizer.vocab_size, tokenizer=tokenizer) We instantiate the model and use ``PyTorch Lightning’s Trainer`` class to handle training. For this example, we’ll continue as if we chose a recommended model. .. code:: python # Train the model using Modlee and PyTorch Lightning's Trainer with modlee.start_run() as run: trainer = pl.Trainer(max_epochs=1) # Train for one epoch trainer.fit( model=recommended_modlee_model, train_dataloaders=train_dataloader, val_dataloaders=test_dataloader ) After training, we inspect the artifacts saved by Modlee, including the model graph and various statistics. With Modlee, your training assets are automatically saved, preserving valuable insights for future reference and collaboration. .. code:: python last_run_path = modlee.last_run_path() print(f"Run path: {last_run_path}") artifacts_path = os.path.join(last_run_path, 'artifacts') artifacts = sorted(os.listdir(artifacts_path)) print(f"Saved artifacts: {artifacts}") .. |Open in Kaggle| image:: https://kaggle.com/static/images/open-in-kaggle.svg :target: https://www.kaggle.com/code/modlee/text-regression