modlee.model_metafeatures module
- class modlee.model_metafeatures.ImageClassificationModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
ImageModelMetafeatures
- class modlee.model_metafeatures.ImageModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
ModelMetafeatures
- class modlee.model_metafeatures.ImageSegmentationModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
ImageModelMetafeatures
- class modlee.model_metafeatures.ModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
object
- check_input_type(sample_input)[source]
Prints the type and shape of the sample_input and breaks for debugging.
- static dataframe_lists_to_columns(df: DataFrame)[source]
Split dataframe columns that are lists to separate, indexed columns
- Parameters:
df – _description_
- static get_graph_dataframe(onnx_graph, *args, **kwargs)[source]
Parse the layers of the model, maybe as a dataframe? With columns of layer type, parameters, indices (position in graph) Can then calculate parameters e.g. counts, parameter ranges, etc This almost seems like a converter function
- static get_layer_counts(df: DataFrame)[source]
Get the counts of each layer type in a dataframe
- Parameters:
df – _description_
- static get_parameter_statistics(df: DataFrame | Series)[source]
Get the statistics of a single-column dataframe or series
- Parameters:
df – _description_
- get_properties(*args, **kwargs)[source]
- These are:
Layer counts
Layer parameter stats, e.g. min/max/mean conv sizes
Size
Input / output shapes
Reference the ModelMFE (metafeature extractor): https://github.com/modlee-ai/recommender/blob/a86eb715c0f8771bbcb20a624eb20bc6f07d6c2b/data_prep/model_mfe.py#L117 In that prior implementation, used the ONNX text representation, and regexes
- class modlee.model_metafeatures.TabularClassificationModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
TabularModelMetafeatures
- class modlee.model_metafeatures.TabularModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
ModelMetafeatures
- class modlee.model_metafeatures.TimeseriesForecastingModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
TimeseriesModelMetafeatures
- class modlee.model_metafeatures.TimeseriesModelMetafeatures(torch_model: Module, sample_input=None, *args, **kwargs)[source]
Bases:
ModelMetafeatures