Source code for modlee.data_metafeatures

# %%
import ssl

ssl._create_default_https_context = ssl._create_unverified_context

import random
import math
import time
from functools import partial

import numpy as np
import pandas as pd
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.tsa.seasonal import seasonal_decompose
from sklearn.cluster import KMeans, MiniBatchKMeans
from sklearn.decomposition import PCA
from sklearn.metrics import (
    silhouette_score,
    calinski_harabasz_score,
    davies_bouldin_score,
)
from torch.utils.data import DataLoader
import spacy
from pymfe.mfe import MFE

import torch
import torchvision
from torchvision.models import (
    resnet18,
    vgg16,
    densenet121,
    alexnet,
    mobilenet_v3_small,
)  # , vit_l_32
import torch.nn.functional as F

from modlee.utils import closest_power_of_2, _make_serializable, class_from_modality_task

fixed_resize = 32
import logging, warnings

for _logger in ["sklearn", "pymfe", "numpy"]:
    pl_logger = logging.getLogger(_logger)
    pl_logger.propagate = False
    pl_logger.setLevel(logging.ERROR)
warnings_to_ignore = [
    "Number of distinct clusters",
    "Will set it as 'np.nan'",
    "Input data for shapiro has range zero",
    "Can't extract feature",
    "invalid value encountered in divide",
    "Mean of empty slice",
    "It is not possible make equal discretization",
    "invalid value encountered in scalar divide",
    "invalid value encountered in double_scalars",
    "invalid value encountered in double scalars",
]
for warning_to_ignore in warnings_to_ignore:
    warnings.filterwarnings("ignore", f".*{warning_to_ignore}.*")

module_available = True


[docs] def bench_kmeans_unsupervised(batch, n_clusters=[2, 4, 8, 16, 32], testing=False): """ Calculate k-means clusters for a batch of data. :param batch: The batch of data. :param n_clusters: Number of clusters to calculate, defaults to [2, 4, 8, 16, 32], :param testing: Flag for testing and calculating with a smaller batch, defaults to False, :return: A dictionary of {'kmeans':calculated_kmeans_clusters} """ if testing == True: n_clusters = [2, 4, 8] # flatten all but first dimension batch = batch.reshape(batch.shape[0], -1) kmeans_results = {} batch_size = batch.shape[0] for nc in n_clusters: if nc > batch_size: continue start_time = time.time() kmeans = KMeans(n_clusters=nc, init="random", n_init="auto") # KMeans labels = kmeans.fit_predict(batch) inertia = kmeans.inertia_ silhouette_avg = silhouette_score( batch, labels ) # x is your data, labels are cluster labels ch_score = calinski_harabasz_score(batch, labels) db_score = davies_bouldin_score(batch, labels) end_time = time.time() kmeans_results[nc] = { "inertia": inertia, "silhouette_score": silhouette_avg, "calinski_harabasz_score": ch_score, "davies_bouldin_score": db_score, "time_taken": end_time - start_time, } # print(kmeans_results) # STOP return {"kmeans": kmeans_results}
[docs] def extract_features_from_model(model, batch): """ Extract features for a data batch using a neural network model. :param model: The model to use for feature extraction. :param batch: The data batch on which to calculate features. :return: The calculated features. """ features = [] with torch.no_grad: input_tensor = batch # torch.from_numpy(x) outputs = model(input_tensor) features.append(outputs) features = torch.cat(features, dim=0) return features
[docs] def pad_image_channels(x, desired_channels=3): """ Pad an image with extra channels. Uses dimeension order [batch, channel, width, height]. :param x: The image tensor to pad. :param desired_channels: Desired number of channels, defaults to 3. :return: The padded tensor. """ # Calculate the number of channels to pad channels_to_pad = desired_channels - x.shape[1] # Create a tensor with zeros for padding padding_tensor = torch.zeros((x.shape[0], channels_to_pad, x.shape[2], x.shape[3])) # Concatenate the original tensor and the padding tensor along the channel dimension padded_tensor = torch.cat((x, padding_tensor), dim=1) return padded_tensor
[docs] def sample_image_channels(x, num_sample=3): """ Sample random channels from an image [batch_size, channel, width, height]. :param x: The image tensor to sample from. :param num_sample: Number of channels to sample, defaults to 3. :return: A tensor of sampled channels. """ # Generate random indices for channel selection random_indices = torch.randperm(x.shape[1])[:num_sample] # Select the channels using the random indices selected_channels = x[:, random_indices] return selected_channels
[docs] def sample_image_from_video(x, num_channels=1): """ Sample 3-channel images from a video tensor [batch_size, frames, channels, width, height]. :param x: The video tensor. :param num_channels: The number of channels to sample. :return: A tensor of images. """ # Generate random channel indices for each batch element random_channel_indices = torch.randint(0, x.shape[1], (x.shape[0], num_channels)) # Use the channel indices to select the channels selected_channels = x[ torch.arange(x.shape[0]), # Batch indices random_channel_indices[:, 0], # Random channel indices :, :, :, # All spatial dimensions ] # Add a new dimension to the selected_channels tensor selected_channels = selected_channels.squeeze(1) return selected_channels
[docs] def manipulate_x_5(x): """ Process a 5-dimensional tensor, assumed to be video-like [batch_size, frames, channels, width, height], into image-like [batch_size, channels, width, height]. :param x: The tensor. :return: A subsample of the tesnor """ x = sample_image_from_video(x) return x
[docs] def manipulate_x_4(x): """ Process a 4-dimensional tensor, assumed to be image-like [batch_size, channelw, width, height], into subchannels :param x: The image to process. :return: Sampled channels from the image. """ if x.shape[1] < 3: x = pad_image_channels(x) elif x.shape[1] > 3: x = sample_image_channels(x) global fixed_resize resized_tensor = F.interpolate( x, size=fixed_resize, mode="bilinear", align_corners=False ) return resized_tensor
[docs] def manipulate_x_3(x): """ Process a 3-dimensional tensor [batch_size, width, height] by resizing to a fixed size. :param x: The tensor. :return: The tensor, resized. """ global fixed_resize try: resized_tensor = F.interpolate( x.unsqueeze(1), size=fixed_resize, mode="bilinear", align_corners=False ) resized_tensor = resized_tensor.squeeze(1) except: return x return resized_tensor
[docs] def manipulate_x_2(x): """ Subsample a 2D tensor to the first 10000 values. :param x: The tensor to subsample. :return: A subsample of the tensor. """ # if data is very large sample first few elements if x.shape[-1] > 10000: x = x[:, :10000] return x
[docs] def manipulate_x_1(x): """ Unsqueeze a 1D tensor. :param x: The tensor. :return: The tensor with an extra beginning dimension. """ return x.unsqueeze(1)
[docs] def get_image_features(x, testing=False): """ Get features for a batch of image data. :param x: The batch of image data. :param testing: Flag to calculate on a smaller test subsample of the data, defaults to False. :return: A dictionary of the features. """ # assumptions: x has the following structure (num,ch,h,w), or (num,?,ch,h,w) # cases # - x shape : (num,3,h,w): all below should work if h&w are compatible # - x shape : (num,h,w): output only raw # - x shape : (num,w): output only raw # - x shape : (num): output only raw # --- manipulate x --- # - x shape : (num,<3,h,w): duplicate image chanels? zero image channels? # - x shape : (num,>3,h,w): take first 3 ch? randomly sample 3 channels? # - x shape : (num,?,ch,h,w): randomly take a slice of "video", then treat as above case ... # print('x shape before manipulation: ',x.shape) x_raw = x if len(x.size()) == 5: if x.size()[2] != min(list(x.size())): print( "WARNING: We require datasets to be formatted (num_dataset_examples,num_images,num_ch,h,w). Encountered tensor from dataset of size {}".format( x.size() ) ) x = manipulate_x_5(x) if len(x.size()) == 4: if x.size()[1] != min(list(x.size())): print( "WARNING: We require datasets to be formatted (num_dataset_examples,num_ch,h,w). Encountered tensor from dataset of size {}".format( x.size() ) ) x = manipulate_x_4(x) if len(x.size()) == 3: x = manipulate_x_3(x) if len(x.size()) == 2: x = manipulate_x_2(x) if len(x.size()) == 1: x = manipulate_x_1(x) assert ( len(x.size()) <= 5 ), "datastats: We can only accommodate datasets of up up to 5 dimensions, Encountered tensor from dataset of size {}".format( x.size() ) assert ( len(x.size()) > 1 ), "datastats: We can only accommodate datasets of between 2 and 5 dimensions, Encountered tensor from dataset of size {}".format( x.size() ) # ------------------------------------------------ # print('x shape after manipulation: ',x.shape) # sleep(5) if testing == True: # Load the pre-trained models model_resnet = resnet18(pretrained=True) model_resnet.fc = torch.nn.Identity() # Set the models to evaluation mode model_resnet.eval() name_model_pairs = [["resnet18", model_resnet]] else: # TODO - Deprectaed, whole function should be refactored or removed # Load the pre-trained models model_resnet = model_vgg = None # model_resnet = resnet18(pretrained=True) # model_resnet.fc = torch.nn.Identity() # model_vgg = vgg16(pretrained=True) # model_vgg.classifier = torch.nn.Sequential( # *list(model_vgg.classifier.children())[:-1] # ) # # Set the models to evaluation mode # model_resnet.eval() # model_vgg.eval() name_model_pairs = [ ["resnet18", model_resnet], ["vgg16", model_vgg], # ['densenet121',model_densenet], # ['alexnet',model_alexnet], # ['mobilenet_v3_small',model_mobile_small], # ['vit_l_32',model_vit_l_32], ] feature_dict = {} for pair in name_model_pairs: # feature_dict[pair[0]] = extract_features(pair[1], x) try: feature_dict[pair[0]] = torch.zeros(1, 1) # feature_dict[pair[0]] = extract_features_from_model(pair[1], x) except: # if model is not compatible with data, just skip for now pass feature_dict["raw"] = x_raw return feature_dict
# NEED TO UPDATE THIS ON OTHER SIDE
[docs] def sample_dataloader(train_dataloader, num_sample): """ Sample batches from a dataloader. :param train_dataloader: The dataloader to sample from. :param num_sample: The number of samples. :return: A tuple of dataset_size, batch_elements, and the original size of the batch. """ # goal: take dataloader, sample batches, seperate elements into own arrays for indpendent analysis # assumptions: # - batches may be shuffled or not # - user may have memory constraints so loading all batches into memory is not viable # - prior to calling this function we know how many samples we want to take # - we don't know the full size of the dataset and we need to return this # 1: Loop through all batches counting number of batches and getting batch_size num_batches = 0 try: for i, batch in enumerate(train_dataloader): if i == 0: # if type(batch)==list or type(batch)==tuple: if type(batch) in [list, tuple]: _subbatch = batch[0] batch_size = _subbatch.size()[0] num_batch_elements = len(batch) else: # assume train_dataloader returns a tensor batch_size = batch.size()[0] num_batch_elements = 1 # print(type(batch)) # print(batch_size) num_batches += 1 except: batch_size = train_dataloader.batch_size num_batches = len(train_dataloader.dataset) // batch_size num_batch_elements = len(next(iter(train_dataloader))) pass assert num_batches != 0, "num_batches={}".format(num_batches) # 2: randomly sample batches at specific inds that total sampling size ~ num_sample: easier on memory num_batches_to_sample = num_sample // batch_size num_batches_to_sample = min( [num_batches_to_sample, num_batches - 1] ) # handles case where num_sample>size of dataset inds_to_sample = set( random.sample(list(np.arange(num_batches - 1)), num_batches_to_sample) ) # -1 avoids incommensurate batches assert ( len(inds_to_sample) == num_batches_to_sample ), "len(inds_to_sample)={},num_batches_to_sample={}".format( len(inds_to_sample), num_batches_to_sample ) sampled_batches = [ batch for i, batch in enumerate(train_dataloader) if i in inds_to_sample ] assert num_batches_to_sample == len( sampled_batches ), "num_batches_to_sample={} != len(sampled_batches)={}".format( num_batches_to_sample, len(sampled_batches) ) # 3: organize batch_elements into their own arrays dataset_size = num_batches * batch_size batch_elements = [] try: for i in range(num_batch_elements): batch_elements.append( torch.concat([torch.Tensor(b[i]).cpu() for b in sampled_batches]) ) except: pass batch_elements_orig_shapes = [b.shape for b in batch_elements] return dataset_size, batch_elements, batch_elements_orig_shapes
[docs] def get_n_samples(dataloader, n_samples=100): """ Get a number of samples from a dataloader :param dataloader: The dataloader. :param n_samples: The number of samples, defaults to 100. :return: An iterable of batch elements, each of length n_samples. """ batch = next(iter(dataloader)) while len(batch[0]) < n_samples: _batch = next(iter(dataloader)) # for b,_b in zip(batch, _batch): for i, b in enumerate(_batch): if isinstance(b, torch.Tensor): batch[i] = torch.cat((batch[i], b), dim=0) else: batch[i] = list(batch[i]) + list(b) # batch[i].append(b) batch[i] = batch[i][:n_samples] return batch
[docs] class DataMetafeatures(object): """ An object to hold metafeatures for a dataset, as loaded from a dataloader. """ def __init__(self, dataloader, num_sample=1000, testing=False): """ Constructor for the data metafeature object. :param dataloader: The dataloader. :param num_sample: The number of samples in the subset to calculate metafeatures, defaults to 1000. :param testing: Flag for testing and using a smaller subset for calculation (100), defaults to False. """ if testing == True: num_sample = 100 self.testing = testing self.dataloader = dataloader # ----------------------------- self.num_sample = num_sample # general and independent of any data type or ml task ( self.dataset_size, self.batch_elements, self.batch_elements_orig_shapes, ) = sample_dataloader(dataloader, num_sample) # needs to be defined in child classes based on data type, still ml task independent self.batch_features = self.get_raw_batch_elements() # general and independent of any data type or ml task start_time = time.time() self.batch_stats = self.get_stats() batch_stats_time = time.time() - start_time # self.batch_stats = [] # Features from PyMFE, a meta-feature extraction library start_time = time.time() self.mfe_features = self.get_mfe_features() self.mfe = self.get_mfe() mfe_time = time.time() - start_time # print(f"Batch stats: {batch_stats_time}; MFE time: {mfe_time}") # for batch_idx,batch_mfe_features in enumerate(self.mfe_features): # print(batch_mfe_features) # self.batch_stats[batch_idx].update({ # 'mfe_features':batch_mfe_features # }) # for mfe_key,mfe_value in self.mfe_features.items(): # self.batch_stats[mfe_key].update(mfe_value) self.properties = self.get_properties() # general and independent of any data type or ml task self.stats_rep = self.get_features() # TODO - deprecated "stats_rep" for "features" self.features = self.stats_rep # breakpoint() self.features = { # **self.embedding, **self.mfe, **self.properties } # self.features = self._make_serializable(self.features) # self.stats_rep.update(self.mfe_features) self._serializable_stats_rep = self._make_serializable(self.stats_rep)
[docs] def get_raw_batch_elements(self): """ Convert features to a list of dictionaries. :return: A list of {'raw': feature} """ return [{"raw": element} for element in self.batch_elements]
[docs] def get_features(self): """ Get features for batch elements. :return: A dictionary of {'batch_element' : features} """ stats_rep = {"dataset_size": self.dataset_size, "num_sample": self.num_sample} for i in range(len(self.batch_elements)): batch_stat = self.batch_stats[i] batch_stat["orig_shape"] = self.batch_elements_orig_shapes[i] batch_stat["mfe_features"] = self.mfe_features[i] stats_rep["batch_element_{}".format(i)] = batch_stat # stats_rep = self._f32_to_f16(stats_rep) return stats_rep
[docs] def get_properties(self): """ Get properties — features that are not calculated, e.g. shapes """ ret = { "dataset_size": self.dataset_size, } samples = get_n_samples(self.dataloader) for i, sample in enumerate(samples): # Get shape if not isinstance(sample, torch.Tensor): sample = np.array(sample) sample_shape = list(sample.shape) sample_dim = len(sample_shape) ret.update( { f"elem_{i}_shape": sample_shape, f"elem_{i}_dims": sample_dim, } ) return ret
get_stats_rep = get_features
[docs] def get_stats(self): """ Get statistical features for batch elements. Includes feature shape, k-means clustering, and time taken to calculate features. :return: A list of statistical features. """ batch_stats = [] for batch in self.batch_features: feature_stats = {} for feature_name, feature in batch.items(): feature_shape = feature.shape start_time = time.time() stats = bench_kmeans_unsupervised(feature, testing=self.testing) end_time = time.time() feature_stats[feature_name] = { "feature_shape": feature_shape, "stats": stats, "time_taken": end_time - start_time, } batch_stats.append(feature_stats) return batch_stats
# def _f32_to_f16(self,base_dict): def _make_serializable(self, base_dict): """ Make a dictionary serializable (e.g. by pickle or json) by converting floats to strings. :param base_dict: The dictionary to convert. :return: The serializable dict. """ return _make_serializable(base_dict)
[docs] def get_mfe_features(self): """ Get features for all batch elements with PyMFE. :return: A list of metafeatures. """ # mfe_features = {} mfe_features = [] for batch_idx, batch_element in enumerate(self.batch_elements): feature_dict = self.get_mfe_on_batch(batch_element) mfe_features.append(feature_dict) return mfe_features
[docs] def get_mfe_on_batch(self, batch_element): """ Get features for a batch element with PyMFE. :param batch_element: The batch element to calculate. :return: A dictionary of features for the batch element. """ # If the batch element is a tensor, convert to numpy array if isinstance(batch_element, torch.Tensor): if len(batch_element.shape) > 2: if len(batch_element.shape) >= 3: batch_element = torchvision.transforms.functional.resize( batch_element, size=(30, 30) ) # print(batch_element.shape) batch_element = batch_element.flatten(start_dim=1) batch_element = batch_element.numpy() mfe = MFE( # groups="all", groups="default" ) mfe.fit( batch_element, # verbose=2, ) features = mfe.extract() feature_dict = {k: v for k, v in zip(*features)} return feature_dict
get_mfe_on_element = get_mfe_on_batch
[docs] def get_mfe(self): """ Get PyMFE features for every element in the dataloader :return: A dictionary of {mfe_feature : mfe_value} """ samples = get_n_samples(self.dataloader) sample_mfes = [self.get_mfe_on_element(sample) for sample in samples] ret = {} for i, sample_mfe in enumerate(sample_mfes): ret.update({f"{k}_{i}": v for k, v in sample_mfe.items()}) return ret
[docs] class ImageDataMetafeatures(DataMetafeatures): """ Image-based DataMetafeatures. """ def __init__(self, dataloader, embd_model=None, *args, **kwargs): super().__init__(dataloader, *args, **kwargs) # if not embd_model: # self.embd_model = torchvision.models.resnet18(weights="IMAGENET1K_V1") # self.embd_model.eval() # self.embedding = self.get_embedding() # self.features.update(self.embedding) self.features = self._make_serializable(self.features) pass
[docs] def get_raw_batch_elements(self): """ Get the raw batch elements for an image-based dataset. :return: A list of image-based features. """ return [ get_image_features(element, testing=self.testing) for element in self.batch_elements ]
[docs] def get_embedding(self, index=0, max_len=100): samples = get_n_samples(self.dataloader) # Assume inputs are the first batch element x = samples[index] with torch.no_grad(): embds = self.embd_model(x) embds = embds[:, :max_len] # Return distributions of each embedding axis ret = { f"embd_{index}_mean_{i}": float(v.numpy()) for i, v in enumerate(embds.mean(axis=0)) } ret.update( { f"embd_{index}_std_{i}": float(v.numpy()) for i, v in enumerate(embds.std(axis=0)) } ) return ret
[docs] class TextDataMetafeatures(DataMetafeatures): def __init__(self, dataloader, nlp_model=None, *args, **kwargs): super().__init__(dataloader, *args, **kwargs) # self.dataloader = dataloader # if not nlp_model: # # TODO - consider using a larger model embedding e.g. en_code_web_sm -> 300D # # and truncate # self.nlp_model = spacy.load("en_core_web_sm") # self.embedding = self.get_embedding() pass
[docs] def get_embedding(self, index=None, max_len=100, *args, **kwargs): """ Get embeddings from the dataloader. :param index: The index in a batch of the string elements to embed, defaults to 1 :return: A dictionary of {embd_i : embd_value} """ samples = get_n_samples(self.dataloader) # Find the index of the first batch of strings if not index: index = 0 while not isinstance(samples[index][0], str): index += 1 if index == len(samples): raise IndexError( f"No string elements in {self}, cannot calculate embedding with spaCy" ) embds = list(map(lambda x: self.nlp_model(x).vector, samples[index])) embds = torch.Tensor(embds) embds = embds[:, :max_len] # Return distributions of each embedding axis # TODO - consider how batch elements are sorted, should they be indexed by the index that the # string elements appear? at "embd_{INDEX}..." # ret = {f'embd_{index}_mean_{i}':float(v.numpy()) for i,v in enumerate(embds.mean(axis=0))} # ret.update({f'embd_{index}_std_{i}':float(v.numpy()) for i,v in enumerate(embds.std(axis=0))}) # TODO - consider this assumption, not indexing the embeddings at all ret = { f"embd_mean_{i}": float(v.numpy()) for i, v in enumerate(embds.mean(axis=0)) } ret.update( {f"embd_std_{i}": float(v.numpy()) for i, v in enumerate(embds.std(axis=0))} ) return ret breakpoint()
[docs] class TabularDataMetafeatures(DataMetafeatures): def __init__(self, dataloader, *args, **kwargs): super().__init__(dataloader, *args, **kwargs) self.stats_rep = self.get_features() # Ensure that self.features is flat self.features.update(self.stats_rep) # TODO - replace with actual embedding # self.embedding = self.stats_rep pass
[docs] def get_features(self): stats_rep = {} for idx, element in enumerate(self.batch_elements): if isinstance(element, torch.Tensor): np_element = element.numpy() stats = self.calculate_statistical_summary(np_element) # Add a prefix to each stat key to ensure uniqueness and flat structure for key, value in stats.items(): stats_rep[f'batch_element_{idx}_{key}'] = value return stats_rep
[docs] def calculate_statistical_summary(self, data): df = pd.DataFrame(data) summary = { 'mean': df.mean().tolist(), 'median': df.median().tolist(), 'variance': df.var().tolist(), 'std_dev': df.std().tolist(), 'min': df.min().tolist(), 'max': df.max().tolist(), 'range': (df.max() - df.min()).tolist(), # Add range calculation 'quantiles_25': df.quantile(0.25).tolist(), 'quantiles_50': df.quantile(0.50).tolist(), 'quantiles_75': df.quantile(0.75).tolist() } return summary
# class TimeseriesDataMetafeatures(DataMetafeatures): # def __init__(self, dataloader): # self.dataloader = dataloader # self.stats_rep = self.calculate_metafeatures() # def get_single_batch(self): # for batch in self.dataloader: # #print(f"Batch type: {type(batch)}") # #print(f"Batch content: {batch}") # if isinstance(batch, tuple) and len(batch) == 2: # data_tensor = batch[0] # return data_tensor # else: # raise ValueError("Batch is not in expected tuple format with two elements.") # raise ValueError("No valid batch found in dataloader.")
[docs] class TimeseriesDataMetafeatures(DataMetafeatures): def __init__(self, dataloader): super().__init__(dataloader=dataloader) # Make sure parent class is called with dataloader self.stats_rep = self.calculate_metafeatures()
[docs] def get_single_batch(self): for batch in self.dataloader: print(f"Batch type: {type(batch)}") # If batch is a list of tensors if isinstance(batch, list) and all(isinstance(item, torch.Tensor) for item in batch): # Assuming you want the first tensor from the list as the data tensor data_tensor = batch[0] return data_tensor # If batch is a single tensor elif isinstance(batch, torch.Tensor): return batch # If batch is a tuple with two elements (data and label) elif isinstance(batch, tuple) and len(batch) == 2: data_tensor = batch[0] return data_tensor else: raise ValueError("Batch is not in expected format (list of tensors, tuple with two elements, or a tensor).") raise ValueError("No valid batch found in dataloader.")
[docs] def calculate_metafeatures(self,advanced=False): data = self.get_single_batch() logging.debug(f"Data shape: {data.shape}") if data.size == 0: raise ValueError("No data available in the batch.") # Flatten the 3D data to 2D for metafeature calculation num_samples, seq_len, num_features = data.shape data_2d = data.reshape(-1, num_features).numpy() # Convert tensor to NumPy array logging.debug(f"Flattened data shape: {data_2d.shape}") logging.debug(f"Flattened data: {data_2d}") # Extract metafeatures using pymfe mfe = MFE(groups=["statistical", "model-based", "info-theory"]) mfe.fit(data_2d) # Pass the flattened NumPy array ft = mfe.extract() pymfe_features = dict(zip(ft[0], ft[1])) logging.debug(f"Extracted pymfe features: {pymfe_features}") # Calculate additional features additional_features = {} if advanced == True: # Combine all features into a single time series combined_series = data_2d.flatten() logging.debug(f"Combined series: {combined_series}") # Calculate quantiles quantiles = np.percentile(combined_series, [25, 50, 75]) logging.debug(f"Quantiles: {quantiles}") # Calculate autocorrelation and partial autocorrelation autocorr = acf(combined_series, nlags=1) logging.debug(f"Autocorrelation: {autocorr}") if len(combined_series) > 2: partial_autocorr = pacf(combined_series, nlags=min(1, len(combined_series) // 2 - 1)) else: partial_autocorr = [np.nan] # or some default value logging.debug(f"Partial Autocorrelation: {partial_autocorr}") if len(autocorr) > 1: autocorr_lag1 = autocorr[1] else: autocorr_lag1 = np.nan # or some default value if len(partial_autocorr) > 1: partial_autocorr_lag1 = partial_autocorr[1] else: partial_autocorr_lag1 = np.nan # or some default value # Decompose the combined time series to extract trend and seasonality if len(combined_series) >= 24: # Check if we have enough data for a period of 12 decomposition = seasonal_decompose(combined_series, period=12, model='additive', extrapolate_trend='freq') trend = decomposition.trend seasonal = decomposition.seasonal trend_strength = np.nanmean(trend) seasonal_strength = np.nanmean(seasonal) logging.debug(f"Trend: {trend}") logging.debug(f"Seasonal: {seasonal}") else: trend_strength = np.nan seasonal_strength = np.nan additional_features.update({ "combined_quantile_25": quantiles[0], "combined_quantile_50": quantiles[1], "combined_quantile_75": quantiles[2], "combined_autocorr_lag1": autocorr_lag1, "combined_partial_autocorr_lag1": partial_autocorr_lag1, "combined_trend_strength": trend_strength, "combined_seasonal_strength": seasonal_strength, }) # Combine pymfe features with additional features combined_features = {**pymfe_features, **additional_features} logging.debug(f"Combined features: {combined_features}") return combined_features
[docs] def print_meta(self, features): # Calculate the maximum length of the keys max_key_length = max(len(key) for key in features.keys()) # Print each key-value pair with the keys aligned for key, value in features.items(): logging.debug(f"{key:<{max_key_length}} : {value}") return None
from_modality_task = partial(class_from_modality_task, _class="Data_Metafeatures")